BY_PAULO NUNES

Generative KI und ChatGPT: Wie verantwortlich sind sie?

generative-ai-banner.jpg

ChatGPT

Large Language Models

Generative KI

Responsible KI

Was ist generative KI?

 

Fangen wir ganz von vorne an. Generative KI ist in den letzten Tagen, Monaten und Jahren ein heißes Thema in der Tech-Szene gewesen und hat nun auch in der öffentlichen Meinung stark an Boden gewonnen. Aber was genau ist das? Nun, einfach ausgedrückt handelt es sich um eine Art von künstlicher Intelligenz, die neue Inhalte wie Bilder, Texte oder sogar Musik erstellen kann. Lassen Sie mich nun ein wenig weiter in die Tiefe gehen und mit einigen Beispielen für generative KI-Modelle beginnen.

 

Große Sprachmodelle (Large Language Models)

 

Ein großes Sprachmodell ist ein Deep-Learning-Modell, das auf großen Mengen von Textdaten trainiert wurde, natürliche Sprachantworten generieren kann und bei einer Vielzahl von Aufgaben zur Verarbeitung natürlicher Sprache Spitzenleistungen erzielt hat.

 

  • Google: Pathways Language Model (PaLM), mit 540 Milliarden Parametern, entwickelt von Google Research.
  • Meta (ehemals Facebook): LLaMA (Language Model for Matching Authors), mit mehreren Größen von 7 Milliarden bis 65 Milliarden Parametern
  • OpenAI: GPT-3 (Generative Pre-trained Transformer 3), mit 175 Milliarden Parametern, entwickelt von OpenAI.
  • ChatGPT

 

Text zu Bild Modelle

 

  • DALL-E: Das von OpenAI entwickelte DALL-E ist ein Text-Bild-Modell, das Bilder aus Textbeschreibungen von Objekten erzeugen kann, die in der realen Welt nicht existieren. DALL-E kann qualitativ hochwertige Bilder von surrealen Objekten und Szenen erzeugen, z. B. eine Schnecke aus Harfen oder einen Würfel aus Cheeseburgern.
  • AttnGAN: AttnGAN wurde von Microsoft Research entwickelt und ist ein Text-Bild-Modell, das mit Hilfe von aufmerksamkeitsbasierten generativen adversen Netzwerken (GANs) Bilder aus Textbeschreibungen erzeugt. AttnGAN kann hochauflösende Bilder von Naturszenen, Vögeln und Blumen aus Textbeschreibungen erzeugen.

 

Multimodale

 

  • Gato: Gato wurde von DeepMind entwickelt und ist ein generalistischer Agent, der von Forschern bei DeepMind entwickelt wurde. Er ist ein multimodaler, multi-task und multiembodiment generalistischer Agent. Er kann z. B. Atari-Spiele spielen, Bilder beschriften, Blöcke mit einem echten Roboterarm stapeln und vieles mehr. Gato wurde mit einer großen Anzahl von Datensätzen trainiert, die Erfahrungen von Agenten sowohl in simulierten als auch in realen Umgebungen sowie eine Vielzahl von Datensätzen zu natürlicher Sprache und Bildern enthalten. Dasselbe Netzwerk mit denselben Gewichten kann Atari spielen, Bilder beschriften, chatten, Blöcke mit einem echten Roboterarm stapeln und vieles mehr, wobei es je nach Kontext entscheidet, ob es Text, Gelenkmomente, Tastendrücke oder andere Token ausgibt.
darth-vader-dj-by-generative-ai.jpg

Generative AI has had Enormous Advancements in Recent Years 

 

With advancements in machine learning, generative AI has made remarkable progress, allowing it to create content that is often indistinguishable from human-made content. However, there are still some limitations to what generative AI can do, and it's essential to understand these limitations to avoid unrealistic expectations.

 

Firstly, it's important to note that generative AI can't replace human creativity. While it can create content that is similar to human-made content, it lacks the same creativity, intuition, and emotional depth that humans possess. Generative AI can only create content based on what it has learned from a given dataset, while human creativity is based on a multitude of experiences, emotions, and influences. Therefore, generative AI should be seen as a tool to assist human creativity rather than a replacement. For now.

 

Secondly, it's crucial to understand that generative AI is not a magic solution for creating content. While it can create impressive results, it requires a significant amount of input data, computational resources, and programming expertise to work effectively. In other words, generative AI is not a plug-and-play solution that can instantly create content with just a few clicks. It requires a lot of resources, time, and effort to train, fine-tune, and optimize the model to achieve the desired results.

 

Thirdly, it's important to recognize that generative AI can sometimes produce biased or inappropriate content. The model learns from the data it's fed, which means that if the input data contains bias or inappropriate content, the model will replicate those biases in its output. This has already been seen in some AI-generated content, such as chatbots and image recognition systems. Therefore, it's crucial to be aware of the potential biases and limitations of the input data and ensure that the generative AI model is regularly monitored and checked for any inappropriate or biased output.

Generative AI bias

Finally, it's important to note that generative AI is not a substitute for human interaction or emotional connection. While it can create content that may evoke emotional responses, it lacks the emotional depth and connection that humans have with each other. Therefore, generative AI should be seen as a tool to augment human interactions and creativity, rather than a replacement.

 

In conclusion, generative AI has made remarkable progress in recent years, but it's important to understand its limitations and potential biases. It can assist human creativity and produce impressive results, but it's not a replacement for human creativity, emotional connection, or interaction. Generative AI should be viewed as a tool to enhance human potential, rather than a substitute.

 

ChatGPT - The Famous Model

 

As a language model, ChatGPT is a form of generative AI that uses natural language processing (NLP) to generate human-like text based on a given input prompt. ChatGPT has been trained on a massive dataset of human-generated text, which allows it to generate text that is often indistinguishable from text written by humans.

 

However, just like other forms of generative AI, ChatGPT has its limitations. It can only generate text based on the input prompt and the data it has been trained on, which means that it may produce biased or inappropriate content if the input data contains such biases. Therefore, it's essential to monitor and evaluate ChatGPT's output to ensure that it's generating appropriate and accurate responses.

 

Overall, the use of generative AI, including ChatGPT, can be a powerful tool to assist in various applications, such as natural language processing, customer service, and content creation. However, it's crucial to understand the limitations and potential biases of generative AI and use it responsibly and ethically.

ChatGPT capabilities and limitations

When should you use ChatGPT and when should you not?

 

ChatGPT can be used in various applications where natural language processing is required, such as chatbots, customer service, and content creation. Here are some scenarios where ChatGPT could be useful:

 

  1. Customer service: ChatGPT can be used to automate customer service interactions, providing customers with quick and accurate responses to their queries.
  2. Personal assistants: ChatGPT can be used to create virtual personal assistants that can understand and respond to natural language queries.
  3. Content creation: ChatGPT can be used to generate content, such as news articles, product descriptions, and social media posts.
  4. Language translation: ChatGPT can be used to translate text from one language to another.

 

However, there are also scenarios where ChatGPT may not be the best choice. Here are some situations where ChatGPT may not be suitable:

 

  1. Sensitive topics: ChatGPT may not be appropriate for handling sensitive topics, such as mental health or suicide prevention, where a human touch and emotional connection may be necessary.
  2. Legal or medical advice: ChatGPT may not be suitable for providing legal or medical advice, where accuracy and precision are crucial, and human expertise is required.
  3. Ethical concerns: ChatGPT may not be appropriate for applications that involve ethical considerations, such as hiring decisions or creditworthiness assessments, where bias and fairness are critical factors.

 

ChatGPT can be useful in various applications, but it's important to consider the nature of the task and the model's potential biases and limitations before using it. Monitoring and evaluating ChatGPT's output is crucial to ensuring that it generates appropriate and accurate responses.

 

The fact that this stuff is powerful does not mean you should turn off your brain.

When to use ChatGPT or not

How does all this relate to Responsible AI ?

 

The use of generative AI, including ChatGPT, raises important ethical and social considerations related to responsible AI. Responsible AI is a set of principles that refers to the responsible and ethical use of AI technologies that considers the social, ethical, and environmental impacts of these technologies. Here are some ways in which the use of ChatGPT and generative AI more broadly can relate to responsible AI:

 

  1. Bias and fairness: As with all AI systems, generative AI models like ChatGPT can be biased and unfair, perpetuating social and cultural biases present in the training data. Responsible AI requires developers to address these issues through techniques such as data preprocessing and algorithmic fairness.
  2. Transparency and accountability: Responsible AI also requires transparency and accountability in the design, development, and deployment of AI systems. This includes transparency about the data and algorithms used to train and operate ChatGPT and accountability for the impact of ChatGPT on end-users and society at large.
  3. Privacy and security: The use of ChatGPT may also raise privacy and security concerns, especially when sensitive information is involved. Responsible AI requires developers to implement robust privacy and security measures to protect end-users' privacy and security.
  4. Human-centered design: Responsible AI requires developers to take a human-centered approach to AI design, ensuring that AI technologies like ChatGPT are designed to enhance human well-being, rather than to replace or harm humans.

 

The broad use of ChatGPT and generative AI raises important ethical and social concerns. To ensure that AI technologies are responsible, ethical, and beneficial to society, developers and stakeholders must take into account these issues.

 

The future is very exciting though.